Symmetry and optimality of disjoint Hamilton cycles in star graphs
نویسندگان
چکیده
Multiple edge-disjoint Hamilton cycles have been obtained in labelled star graphs Stn of degree n-1, using number-theoretic means, as images of a known base 2-labelled Hamilton cycle under label-mapping automorphisms of Stn. However, no optimum bounds for producing such edge-disjoint Hamilton cycles have been given, and no positive or negative results exist on whether Hamilton decompositions can be produced by such constructions other than a positive result for St5. We show that for all even n there exist such collections, here called symmetric collections, of φ(n)/2 edge-disjoint Hamilton cycles, where φ is Euler’s totient function, and that this bound cannot be improved for any even or odd n. Thus, Stn is not symmetrically Hamilton decomposable if n is not prime. Our method improves on the known bounds for numbers of any kind of edge-disjoint Hamilton cycles in star graphs.
منابع مشابه
Automorphisms generating disjoint Hamilton cycles in star graphs
In the first part of the thesis we define an automorphism φn for each star graph Stn of degree n − 1, which yields permutations of labels for the edges of Stn taken from the set of integers {1, . . . , bn/2c}. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known two-labelled Hamilton cycle H1 2(n)...
متن کاملDisjoint Hamilton cycles in the star graph
In 1987, Akers, Harel and Krishnamurthy proposed the star graph Σ(n) as a new topology for interconnection networks. Hamiltonian properties of these graphs have been investigated by several authors. In this paper, we prove that Σ(n) contains bn/8c pairwise edge-disjoint Hamilton cycles when n is prime, and Ω(n/ log log n) such cycles for arbitrary n.
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملMaximal sets of hamilton cycles in complete multipartite graphs
A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has
متن کاملHamilton decompositions of regular expanders: Applications
In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n − 1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This v...
متن کامل